28 www.megger.comFall-of-Potential Method: This three-terminal test is the method described previously with reference to Fig. 10. With a four-terminal tester, P1 and C1 terminals on the instrument are jumpered and connected to the earth electrode under test. With a three-terminal instrument, connect X to the earth electrode. Although four terminals are necessary for resistivity measurements, the use of either three of four terminals is largely optional for testing the resistance of an installed electrode. The use of three terminals is more convenient because it requires one lead to be connected. The trade-off is that the resistance of this common lead is included in the measurement. Normally, this effect can be minimized by keeping the lead short, to accommodate simple test requirements. The small additional resistance thus introduced is negligible. When performing more complex tests or meeting stringent requirements, however, it may be better to use all four terminals by a lead from the P1 terminal to the test electrode (connecting it inside the lead from C1). This is a true four-wire test configuration which eliminates all lead resistance from the measurement. The added accuracy may prove significant when meeting very low resistance specifications or using test methods that necessitate an extra digit of measurement in order to meet the mathematical requirements. The decision is optional, based on the operator’s testing goals and the method used. The driven reference rod C should be Typical use of a Megger digital ground resistance tester to perform fall-of-potential testing